论文标题
部分可观测时空混沌系统的无模型预测
Bose-Einstein Condensate dark matter models in the presence of baryonic matter and random confining potentials
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider the effects of an uncorrelated random potential on the properties of Bose-Einstein Condensate (BEC) dark matter halos, which acts as a source of disorder, and which is added as a new term in the Gross-Pitaevskii equation, describing the properties of the halo. By using the hydrodynamic representation we derive the basic equation describing the density distribution of the galactic dark matter halo, by also taking into account the effects of the baryonic matter, and of the rotation. The density, mass and tangential velocity profiles are obtained exactly in spherical symmetry by considering a simple exponential density profile for the baryonic matter, and a Gaussian type disorder potential. To test the theoretical model we compare its predictions with a set of 39 galaxies from the Spitzer Photometry \& Accurate Rotation Curves (SPARC) database. We obtain estimates of the relevant astrophysical parameters of the dark matter dominated galaxies, including the baryonic matter properties, and the parameters of the random potential. The BEC model in the presence of baryonic matter and a random confining potential gives a good statistical description of the SPARC data. The presence of the condensate dark matter could also provide a solution for the core/cusp problem.