论文标题

部分可观测时空混沌系统的无模型预测

Dynamic Curriculum Learning for Great Ape Detection in the Wild

论文作者

Yang, Xinyu, Burghardt, Tilo, Mirmehdi, Majid

论文摘要

我们提出了一种新型的端到端课程学习方法,用于利用大量未标记数据来改善监督物种探测器的稀疏标记动物数据集。我们详细说明了在挑战现实世界丛林环境中拍摄的相机陷阱素材中找到大猿的任务。与以前的半监督方法相反,我们的方法随着时间的推移会动态调整学习参数,并通过将训练转向良性自我强化,从而逐渐提高检测质量。为了实现这一目标,我们建议将伪标签与课程学习政策相结合,并展示如何避免学习崩溃。在评估大约扩展的Panafrican数据集持有时,我们讨论了对各种最新系统的理论论点,消融和对各种最新系统的绩效改进。 18m帧。我们还证明,我们的方法在其他动物数据集的稀疏标签版本(如蜜蜂和快照Serengeti)上具有明显的余量,可以胜过监督的基线。我们注意到,对于在生态应用中常见的较小标记比率而言,性能优势最强。最后,我们表明我们的方法实现了在MS-Coco和Pascal-Voc中通用对象检测的竞争基准,这表明引入的动态学习概念的更广泛适用性。我们发布了所有相关的源代码,网络权重和数据访问详细信息,以获得完整的可重复性。该代码可在https://github.com/youshyee/dcl-detection上找到。

We propose a novel end-to-end curriculum learning approach for sparsely labelled animal datasets leveraging large volumes of unlabelled data to improve supervised species detectors. We exemplify the method in detail on the task of finding great apes in camera trap footage taken in challenging real-world jungle environments. In contrast to previous semi-supervised methods, our approach adjusts learning parameters dynamically over time and gradually improves detection quality by steering training towards virtuous self-reinforcement. To achieve this, we propose integrating pseudo-labelling with curriculum learning policies and show how learning collapse can be avoided. We discuss theoretical arguments, ablations, and significant performance improvements against various state-of-the-art systems when evaluating on the Extended PanAfrican Dataset holding approx. 1.8M frames. We also demonstrate our method can outperform supervised baselines with significant margins on sparse label versions of other animal datasets such as Bees and Snapshot Serengeti. We note that performance advantages are strongest for smaller labelled ratios common in ecological applications. Finally, we show that our approach achieves competitive benchmarks for generic object detection in MS-COCO and PASCAL-VOC indicating wider applicability of the dynamic learning concepts introduced. We publish all relevant source code, network weights, and data access details for full reproducibility. The code is available at https://github.com/youshyee/DCL-Detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源