论文标题

非相互作用拓扑的量量较弱,安德森绝缘子

Weak quantization of non-interacting topological Anderson insulator

论文作者

Vu, DinhDuy, Sarma, Sankar Das

论文摘要

我们研究了具有量化边缘电导的二维拓扑绝缘子(TI)与强大疾病引起的微不足道的安德森绝缘子(AI)之间的过渡。我们发现Ti在相变附近的独特缩放行为,纵向电导通过具有系统大小的幂定律接近量化值,而不是清洁Ti中的指数定律。因此,该区域称为弱量化拓扑绝缘子(WQTI)。通过使用自洽天生的近似,我们将弱量化的出现与有效自我能源的虚构部分相关联,从而获得有限的强度障碍。我们使用由直接数值模拟支持的分析理论来研究障碍范围对拓扑安德森绝缘子的影响。有趣的是,尽管此阶段对于不相关或短期疾病非常通用,但它被远程疾病强烈抑制,也许可以解释为什么在固态系统中从未见过它。

We study the transition between the two-dimensional topological insulator (TI) featuring quantized edge conductance and the trivial Anderson insulator (AI) induced by strong disorder. We discover a distinct scaling behavior of TI near the phase transition where the longitudinal conductance approaches the quantized value by a power law with system size, instead of an exponential law in clean TI. This region is thus called the weak quantization topological insulator (WQTI). By using the self-consistent Born approximation, we associate the emergence of the weak quantization with the imaginary part of the effective self-energy acquiring a finite value at strong disorder. We use our analytical theory, supported by direct numerical simulations, to study the effect of disorder range on the topological Anderson insulator. Interestingly, while this phase is quite generic for uncorrelated or short-range disorder, it is strongly suppressed by long-range disorder, perhaps explaining why it has never been seen in solid state systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源