论文标题

TAP方程:评估生物学的组合创新

The TAP equation: evaluating combinatorial innovation in Biocosmology

论文作者

Cortês, Marina, Kauffman, Stuart A., Liddle, Andrew R., Smolin, Lee

论文摘要

我们研究了TAP方程的解决方案,这是对相邻理论的现象学实施。研究了一些TAP的实施,并在包括经济学,社会科学,环境变化,进化生物系统以及物理定律的性质在内的一系列主题中进行了潜在应用。通用行为是一个扩展的高原,其次是急剧的爆炸性差异。我们发现我们在数值模拟中验证的爆炸时间的准确分析近似,并探索了创新和灭绝之间平衡附近方程的性质。一种特定的变体,两尺度的TAP模型,用指数增长的阶段代替了初始高原,这可以扩大水龙头方程现象学,可以使其能够在更广泛的上下文中应用。

We investigate solutions to the TAP equation, a phenomenological implementation of the Theory of the Adjacent Possible. Several implementations of TAP are studied, with potential applications in a range of topics including economics, social sciences, environmental change, evolutionary biological systems, and the nature of physical laws. The generic behaviour is an extended plateau followed by a sharp explosive divergence. We find accurate analytic approximations for the blow-up time that we validate against numerical simulations, and explore the properties of the equation in the vicinity of equilibrium between innovation and extinction. A particular variant, the two-scale TAP model, replaces the initial plateau with a phase of exponential growth, a widening of the TAP equation phenomenology that may enable it to be applied in a wider range of contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源