论文标题
在某种程度上加速了$ P $ -SPIN动力学
Accelerating, to some extent, the $p$-spin dynamics
论文作者
论文摘要
我们考虑违反固定状态的详细平衡,其固定状态是规定的玻尔兹曼分布。这种动力学已显示出比任何平衡对应物都快。我们量化了能源景观显示一个,然后是无限数量的能量屏障的系统的收敛速度增益。在后一种情况下,我们与平均场失调的$ p $ spin合作,并表明在$β$和$α$ - 延误阶段的融合均与平衡或非近战相的融合都得到了加速。提供了相位空间中的轨迹和意外波动散落定理的解释。
We consider a detailed-balance violating dynamics whose stationary state is a prescribed Boltzmann distribution. Such dynamics have been shown to be faster than any equilibrium counterpart. We quantify the gain in convergence speed for a system whose energy landscape displays one, and then an infinite number of, energy barriers. In the latter case, we work with the mean-field disordered $p$-spin, and show that the convergence to equilibrium or to the nonergodic phase is accelerated, both during the $β$ and $α$-relaxation stages. An interpretation in terms of trajectories in phase space and of an accidental fluctuation-dissipation theorem is provided.