论文标题

高维参数空间的可视化和优化技术

Visualization and Optimization Techniques for High Dimensional Parameter Spaces

论文作者

Tyagi, Anjul

论文摘要

在许多应用中,高维参数空间优化至关重要。影响此性能的参数在其类型上可能是数值和分类的。黑盒优化和视觉分析的现有技术在处理数值参数方面非常有用,但是在数值变量的上下文中分析分类变量尚未得到很好的研究。因此,我们提出了一种新颖的方法,以创建一个自动调整框架,以组合直接优化技术和视觉分析研究。虽然优化算法将是系统的核心,但视觉分析将在外部代理(专家)的帮助下提供指南,以提供至关重要的提示,以缩小优化引擎的较大搜索空间。作为创建用于存储系统优化的自动调整引擎的初始步骤的一部分,我们创建了一个交互式配置Exploration \ textIt {ICE},该配置直接解决了分析师的需求,以了解依赖性数值变量如何受到给定多个优化目标的参数设置的影响。由于ICE显示了每个分类变量的上下文中,因此没有信息丢失。分析师可以交互过滤变量,以优化某些目标,例如实现具有最大性能,差异较低的系统。我们的系统是与一组系统绩效研究人员紧密合作开发的,并通过专家访谈,一项比较用户研究和两项案例研究对其最终有效性进行了评估。我们还讨论了我们的研究计划,以创建一个有效的自动调整框架,该框架结合了黑框优化和可视化分析,以进行存储系统性能优化。

High dimensional parameter space optimization is crucial in many applications. The parameters affecting this performance can be both numerical and categorical in their type. The existing techniques of black-box optimization and visual analytics are good in dealing with numerical parameters but analyzing categorical variables in context of the numerical variables are not well studied. Hence, we propose a novel approach, to create an auto-tuning framework for storage systems optimization combining both direct optimization techniques and visual analytics research. While the optimization algorithm will be the core of the system, visual analytics will provide a guideline with the help of an external agent (expert) to provide crucial hints to narrow down the large search space for the optimization engine. As part of the initial step towards creating an auto-tuning engine for storage systems optimization, we created an Interactive Configuration Explorer \textit{ICE}, which directly addresses the need of analysts to learn how the dependent numerical variable is affected by the parameter settings given multiple optimization objectives. No information is lost as ICE shows the complete distribution and statistics of the dependent variable in context with each categorical variable. Analysts can interactively filter the variables to optimize for certain goals such as achieving a system with maximum performance, low variance, etc. Our system was developed in tight collaboration with a group of systems performance researchers and its final effectiveness was evaluated with expert interviews, a comparative user study, and two case studies. We also discuss our research plan for creating an efficient auto-tuning framework combining black-box optimization and visual analytics for storage systems performance optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源