论文标题
Gödel-type som-raychaudhuri cosmic cosmic string时空背景中的pdm klein-gordon颗粒
PDM Klein-Gordon particles in Gödel-type Som-Raychaudhuri cosmic string spacetime background
论文作者
论文摘要
在Gödel-type som-raychaudhuri(SR)宇宙弦天空背景中,我们重新估算klein-gordon(kg)振荡器,并报告其正确的精确解决方案。我们认为,kg方程式中二维径向schrödinger样振荡器的数学崩溃并不产生一个振动器的参数特征是另一个遗传的参数特征。 Schrödinger情况下的角频率(正)被KG-Case中的非理性频率(正和负)所取代。继承Schrödinger振荡器的参数特征意味着在此过程中至少有一半的光谱(负部分)丢失。我们还在伪gödelsr型时空中介绍了KG振荡器,该时期允许与GödelSr-Sr-type时空背景中的不变性和同志。我们将依赖位置的质量(PDM)设置引入4-vector的KG颗粒,并在GödelSR型时空背景中的磁场中的标量Lorentz电势中引入kg颗粒。讨论了基本性质的四个说明性示例,并报告了它们的确切或有条件的解决性。 Amongst are, a PDM KG-Coulombic particle in 4-vector and scalar Coulombic Lorentz potentials in magnetic field, a PDM KG-Coulombic particle in 4-vector and scalar Coulombic Lorentz potentials in magnetic field at zero vorticity, a PDM KG-Coulombic particle in equally mixed 4-vector and scalar Coulombic Lorentz potentials in magnetic field, and a无准PDM kg振荡器。我们还强调,有效的振荡器和康奈尔型电势的双色HEUN多项式方法在有条件的精确溶解性中,使溶液瘫痪在纯库仑的溶液中。
In Gödel-type Som-Raychaudhuri (SR) cosmic string spacetime background, we re-cycle the Klein-Gordon (KG) oscillators and report their correct exact solutions. We argue that the mathematical collapse of the KG-equation into the 2-dimensional radial Schrödinger-like oscillator does not yield that the parametric characterizations of one is inherited by the other. The angular frequency (positive) in the Schrödinger case is replaced by an irrational frequency-like (positive and negative) in the KG-case. Inheriting the Schrödinger oscillator's parametric characterizations implies that at least half of the spectra (the negative part) is lost in the process. We also introduce KG-oscillators in pseudo-Gödel SR-type spacetime that admit invariance and isospectrality with those in Gödel SR-type spacetime background. We introduce position-dependent mass (PDM) settings to KG-particles in 4-vector and scalar Lorentz potentials in magnetic field in the Gödel SR-type spacetime background. Four illustrative examples of fundamental nature are discussed and their exact or conditionally exact solvability are reported. Amongst are, a PDM KG-Coulombic particle in 4-vector and scalar Coulombic Lorentz potentials in magnetic field, a PDM KG-Coulombic particle in 4-vector and scalar Coulombic Lorentz potentials in magnetic field at zero vorticity, a PDM KG-Coulombic particle in equally mixed 4-vector and scalar Coulombic Lorentz potentials in magnetic field, and a quasi-free PDM KG-oscillator. We also emphasis that the biconfluent Heun polynomial approach, to the effective oscillator plus Cornell type potential, yields conditionally exact solvability that paralyzes the solution from collapsing into that of pure Coulombic one.