论文标题

在风和光伏电源预测中转移学习的模型选择,适应和组合

Model Selection, Adaptation, and Combination for Transfer Learning in Wind and Photovoltaic Power Forecasts

论文作者

Schreiber, Jens, Sick, Bernhard

论文摘要

最近,在计算机视觉任务中使用模型中心(预训练模型的集合)引起了人们的兴趣。要使用模型中心,我们首先选择一个源模型,然后调整目标的模型以补偿差异。尽管对于计算机视觉任务的模型选择和适应性的研究仍有有限的研究,但对于可再生能源领域而言,这甚至更具效果。同时,根据数值天气预测的天气特征,为对电力预测的需求不断增长提供预测是一个至关重要的挑战。我们通过进行第一个彻底的实验来弥合这些差距,以进行模型选择和适应可再生能力预测的转移学习,从而采用了667风和光伏公园的计算机视觉领域的最新结果。据我们所知,这使其成为可再生能力预测中转移学习的最广泛研究,以减少计算工作并改善预测错误。因此,我们根据来自不同季节的目标数据采用源模型,并限制培训数据的量。作为当前最新状态的扩展,我们利用贝叶斯线性回归来根据从神经网络中提取的特征来预测响应。这种方法的表现仅超过基线,只有7天的培训数据。我们进一步展示了如何通过合奏组合多个模型可以显着改善模型选择和适应方法。

There is recent interest in using model hubs, a collection of pre-trained models, in computer vision tasks. To utilize the model hub, we first select a source model and then adapt the model for the target to compensate for differences. While there is yet limited research on model selection and adaption for computer vision tasks, this holds even more for the field of renewable power. At the same time, it is a crucial challenge to provide forecasts for the increasing demand for power forecasts based on weather features from a numerical weather prediction. We close these gaps by conducting the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast, adopting recent results from the field of computer vision on 667 wind and photovoltaic parks. To the best of our knowledge, this makes it the most extensive study for transfer learning in renewable power forecasts reducing the computational effort and improving the forecast error. Therefore, we adopt source models based on target data from different seasons and limit the amount of training data. As an extension of the current state of the art, we utilize a Bayesian linear regression for forecasting the response based on features extracted from a neural network. This approach outperforms the baseline with only seven days of training data. We further show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源