论文标题

关于医疗应用的注意机制的调查:我们是否正在朝着更好的算法发展?

A survey on attention mechanisms for medical applications: are we moving towards better algorithms?

论文作者

Gonçalves, Tiago, Rio-Torto, Isabel, Teixeira, Luís F., Cardoso, Jaime S.

论文摘要

对计算机视觉和自然语言处理的深度学习算法中注意机制的普及使这些模型对其他研究领域有吸引力。在医疗保健中,需要强烈需要改善临床医生和患者常规的工具。自然,将基于注意力的算法用于医疗应用的情况顺利进行。但是,作为一个取决于高项决定的领域,如果这些高性能算法符合医疗应用的需求,那么科学界就必须思考。有了这个座右铭,本文广泛回顾了在机器学习中(包括变压器)在几种医疗应用中使用注意力机制。这项工作通过提出对文献中有关医疗图像分类的实验案例研究对文献中提出的注意机制的主张和潜力进行批判性分析,从而将自己与前任区分开来。这些实验将注意机制的整合过程集成到已建立的深度学习体系结构,对其预测能力的分析以及通过事后解释方法产生的显着性图的视觉评估。本文以文献中有关注意机制提出的主张和潜力进行了批判性分析,并提出了可能受益于这些框架的医学应用中的未来研究行。

The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning (including Transformers) for several medical applications. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源