论文标题

用于引用分割的实例特定特征传播

Instance-Specific Feature Propagation for Referring Segmentation

论文作者

Liu, Chang, Jiang, Xudong, Ding, Henghui

论文摘要

参考细分旨在为自然语言表达式指示的目标实例生成细分面具。通常有两种现有方法:直接对融合视觉和语言特征进行分割的单阶段方法;以及首先利用实例分割模型的两个阶段方法进行实例提案,然后通过将它们与语言功能匹配选择其中一种。在这项工作中,我们提出了一个新颖的框架,该框架同时通过特征传播检测利益目标并生成细粒的分割掩码。在我们的框架中,每个实例都由特定于实例的功能(ISF)表示,并且通过使用我们建议的功能传播模块(FPM)在所有ISF之间交换信息来标识引用目标。我们的实例感知方法学习了所有对象之间的关系,这有助于更好地定位利益的目标,而不是一阶段方法。与两阶段方法相比,我们的方法与互动性和语言信息进行了协作和交互式,以进行同步识别和细分。在实验测试中,我们的方法在所有三个reccoco系列数据集上都优于先前的最新方法。

Referring segmentation aims to generate a segmentation mask for the target instance indicated by a natural language expression. There are typically two kinds of existing methods: one-stage methods that directly perform segmentation on the fused vision and language features; and two-stage methods that first utilize an instance segmentation model for instance proposal and then select one of these instances via matching them with language features. In this work, we propose a novel framework that simultaneously detects the target-of-interest via feature propagation and generates a fine-grained segmentation mask. In our framework, each instance is represented by an Instance-Specific Feature (ISF), and the target-of-referring is identified by exchanging information among all ISFs using our proposed Feature Propagation Module (FPM). Our instance-aware approach learns the relationship among all objects, which helps to better locate the target-of-interest than one-stage methods. Comparing to two-stage methods, our approach collaboratively and interactively utilizes both vision and language information for synchronous identification and segmentation. In the experimental tests, our method outperforms previous state-of-the-art methods on all three RefCOCO series datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源