论文标题

自我恢复的对抗性例子:社交网络中的一种新的有效保护机制

Self-recoverable Adversarial Examples: A New Effective Protection Mechanism in Social Networks

论文作者

Zhang, Jiawei, Wang, Jinwei, Wang, Hao, Luo, Xiangyang

论文摘要

恶意的智能算法通过检测和分析上传的照片到社交网络平台,从而极大地威胁了社会用户隐私的安全性。对抗性攻击带来的对DNN的破坏激发了对抗性例子是社交网络中隐私安全的新保护机制的潜力。但是,现有的对抗示例没有作为有效保护机制的可恢复性。为了解决此问题,我们提出了一个可回收的生成对抗网络,以生成自我回归的对抗示例。通过将对抗性攻击和恢复作为统一任务进行建模,我们的方法可以在最大化攻击能力的同时最大程度地减少恢复示例的错误,从而更好地恢复对抗性示例。为了进一步提高这些示例的可恢复性,我们利用尺寸降低器来优化对抗扰动的分布。实验结果证明,由所提出的方法生成的对抗性示例具有在不同数据集和网络体系结构上的卓越可恢复性,攻击能力和鲁棒性,从而确保其作为社交网络中保护机制的有效性。

Malicious intelligent algorithms greatly threaten the security of social users' privacy by detecting and analyzing the uploaded photos to social network platforms. The destruction to DNNs brought by the adversarial attack sparks the potential that adversarial examples serve as a new protection mechanism for privacy security in social networks. However, the existing adversarial example does not have recoverability for serving as an effective protection mechanism. To address this issue, we propose a recoverable generative adversarial network to generate self-recoverable adversarial examples. By modeling the adversarial attack and recovery as a united task, our method can minimize the error of the recovered examples while maximizing the attack ability, resulting in better recoverability of adversarial examples. To further boost the recoverability of these examples, we exploit a dimension reducer to optimize the distribution of adversarial perturbation. The experimental results prove that the adversarial examples generated by the proposed method present superior recoverability, attack ability, and robustness on different datasets and network architectures, which ensure its effectiveness as a protection mechanism in social networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源