论文标题

命名实体识别的边界平滑

Boundary Smoothing for Named Entity Recognition

论文作者

Zhu, Enwei, Li, Jinpeng

论文摘要

神经命名实体识别(NER)模型可能很容易遇到过度信心的问题,从而降低了性能和校准。受标签平滑的启发,并受到NER工程边界注释的歧义的驱动,我们提出了边界平滑作为基于跨度神经NER模型的正则化技术。它将实体概率从注释跨度重新分配到周围的跨度。我们的模型以简单但强大的基线为基础,比在八个著名的NER基准上与以前最先进的系统竞争更好或具有竞争力。进一步的经验分析表明,边界平滑有效地缓解过度信心,改善模型校准,并带来更平坦的神经最小值和更平滑的损失景观。

Neural named entity recognition (NER) models may easily encounter the over-confidence issue, which degrades the performance and calibration. Inspired by label smoothing and driven by the ambiguity of boundary annotation in NER engineering, we propose boundary smoothing as a regularization technique for span-based neural NER models. It re-assigns entity probabilities from annotated spans to the surrounding ones. Built on a simple but strong baseline, our model achieves results better than or competitive with previous state-of-the-art systems on eight well-known NER benchmarks. Further empirical analysis suggests that boundary smoothing effectively mitigates over-confidence, improves model calibration, and brings flatter neural minima and more smoothed loss landscapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源