论文标题

轨迹预测的目标驱动的自我煽动的反复网络

Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction

论文作者

Chiara, Luigi Filippo, Coscia, Pasquale, Das, Sourav, Calderara, Simone, Cucchiara, Rita, Ballan, Lamberto

论文摘要

人类轨迹预测是自动驾驶汽车,社会意识机器人和高级视频保障应用程序的关键组成部分。这项具有挑战性的任务通常需要了解过去的运动,环境以及可能的目的地领域。在这种情况下,多模式是一个基本方面,其有效的建模可能对任何架构有益。但是,由于未来的固有不确定本质,推断准确的轨迹是具有挑战性的。为了克服这些困难,最近的模型使用不同的输入,并建议使用复杂的融合机制来建模人类意图。在这方面,我们提出了一个基于注意力的重复反复主链,该主链仅作用于过去观察到的位置。尽管这种骨干已经提供了有希望的结果,但我们证明,与场景感知的目标估计模块结合使用,可以大大提高其预测准确性。为此,我们基于U-NET体系结构采用了一个共同的目标模块,该模块还提取语义信息以预测符合场景的目的地。我们在公共可用数据集(即SDD,IND,ETH/UCY)上进行了广泛的实验,并表明我们的方法在最先进的技术方面执行,同时降低模型复杂性。

Human trajectory forecasting is a key component of autonomous vehicles, social-aware robots and advanced video-surveillance applications. This challenging task typically requires knowledge about past motion, the environment and likely destination areas. In this context, multi-modality is a fundamental aspect and its effective modeling can be beneficial to any architecture. Inferring accurate trajectories is nevertheless challenging, due to the inherently uncertain nature of the future. To overcome these difficulties, recent models use different inputs and propose to model human intentions using complex fusion mechanisms. In this respect, we propose a lightweight attention-based recurrent backbone that acts solely on past observed positions. Although this backbone already provides promising results, we demonstrate that its prediction accuracy can be improved considerably when combined with a scene-aware goal-estimation module. To this end, we employ a common goal module, based on a U-Net architecture, which additionally extracts semantic information to predict scene-compliant destinations. We conduct extensive experiments on publicly-available datasets (i.e. SDD, inD, ETH/UCY) and show that our approach performs on par with state-of-the-art techniques while reducing model complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源