论文标题

f(t)重力中黑洞的准模式

Quasinormal modes of black holes in f(T) gravity

论文作者

Zhao, Yaqi, Ren, Xin, Ilyas, Amara, Saridakis, Emmanuel N., Cai, Yi-Fu

论文摘要

我们计算了无质量标量场的准模式(QNM)频率,以及$ f(t)$重力中静态黑洞周围的电磁场。专注于二次$ f(t)$修改,对于每个现实的$ f(t)$理论来说,这是一个很好的近似值,我们首先使用扰动方法提取球形对称的解决方案,并强加了两个ANS $ \ ddot {\ text {a}} $ tze for the sch ewertiations schwarzs cepriation schwarzs s schwarzss schewwarzss。此外,我们提取有效的电势,然后计算获得的溶液的QNM频率。首先,我们使用离散化方法来数字求解Schr $ \ ddot {\ text {o}} $类似dinger的方程,并提取了应用功能拟合方法的主要模式的频率和时间演变。其次,我们通过将WKB方法与尺寸近似进行半分析计算。我们表明,与一般相对论相比,$ f(t)$重力的结果不同,特别是我们获得了不同模型参数值的场衰减行为的不同斜率和周期。因此,在二进制系统中提高精度的重力波观察结果下,可以将整个分析用作测试一般相对性的附加工具,并检查是否可能进行扭转引力修饰。

We calculate the quasinormal modes (QNM) frequencies of a test massless scalar field and an electromagnetic field around static black holes in $f(T)$ gravity. Focusing on quadratic $f(T)$ modifications, which is a good approximation for every realistic $f(T)$ theory, we first extract the spherically symmetric solutions using the perturbative method, imposing two ans$\ddot{\text{a}}$tze for the metric functions, which suitably quantify the deviation from the Schwarzschild solution. Moreover, we extract the effective potential, and then calculate the QNM frequency of the obtained solutions. Firstly, we numerically solve the Schr$\ddot{\text{o}}$dinger-like equation using the discretization method, and we extract the frequency and the time evolution of the dominant mode applying the function fit method. Secondly, we perform a semi-analytical calculation by applying the WKB method with the Pade approximation. We show that the results for $f(T)$ gravity are different compared to General Relativity, and in particular we obtain a different slope and period of the field decay behavior for different model parameter values. Hence, under the light of gravitational-wave observations of increasing accuracy from binary systems, the whole analysis could be used as an additional tool to test General Relativity and examine whether torsional gravitational modifications are possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源