论文标题

润湿液滴的前部:微观模拟和通用波动

Spreading fronts of wetting liquid droplets: microscopic simulations and universal fluctuations

论文作者

Marcos, J. M., Rodríguez-López, P., Melendez, J. J., Cuerno, R., Ruiz-Lorenzo, J. J.

论文摘要

我们已经使用了晶格气体的动力学蒙特卡洛(KMC)模拟来研究非挥发性液滴散布到固体基板上的前波动。我们的结果与前体层半径($ r \ sim t^δ$)的扩散生长定律一致,在考虑到温度和底物润湿性的所有条件下,$δ\ 1/2 $,与先前的研究非常吻合。前面的波动表现出具有指数值的动力粗糙度,这些属性取决于温度$ t $,但由于足够高的$ t $而独立于$ t $。此外,已经发现了固有异常缩放的强烈证据,其特征是在短和大长度尺度下粗糙度指数的不同值。尽管这种行为与一维Kardar-Parisi-Zhang(KPZ)通用类别的缩放特性不同,但在我们的KMC模拟中发现的前之间波动的前协方差和概率分布功能确实显示了KPZ行为,并且在此上下文中提出了连续高度方程的模拟。但是,该方程与离散模型不同,并不具有固有的异常缩放。

We have used kinetic Monte Carlo (kMC) simulations of a lattice gas to study front fluctuations in the spreading of a non-volatile liquid droplet onto a solid substrate. Our results are consistent with a diffusive growth law for the radius of the precursor layer, $R \sim t^δ$, with $δ\approx 1/2$ in all the conditions considered for temperature and substrate wettability, in good agreement with previous studies. The fluctuations of the front exhibit kinetic roughening properties with exponent values which depend on temperature $T$, but become $T$-independent for sufficiently high $T$. Moreover, strong evidences of intrinsic anomalous scaling have been found, characterized by different values of the roughness exponent at short and large length scales. Although such a behavior differs from the scaling properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class, the front covariance and the probability distribution function of front fluctuations found in our kMC simulations do display KPZ behavior, agreeing with simulations of a continuum height equation proposed in this context. However, this equation does not feature intrinsic anomalous scaling, at variance with the discrete model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源