论文标题
将真空共振作为具有可调寿命的人造原子
Confined vacuum resonances as artificial atoms with tunable lifetime
论文作者
论文摘要
原子设计的人工晶格是模拟复杂量子现象的有用工具,但到目前为止,限于对汉密尔顿人的研究,在该研究中,电子 - 电子相互作用不起作用 - 但这正是这些相互作用确实在计算时间借用模拟比数字方法的关键优势的状态。在这里,我们提出了一个新的平台,用于构建人造物质,该平台依赖于场排放共振的限制,这是一类真空定位的离散电子状态。我们使用对氯终止铜(100)表面表面空缺的原子操纵来揭示基础金属的平方贴片,从而产生了托有颗粒粒子盒模式的原子上精确的潜在孔。通过调整限制电势的形状和大小,我们可以访问具有不同量子数的状态,使这些贴片作为量子点或人工原子有吸引力的候选物。我们证明,可以通过原子组件或更改尖端样本距离来扩展这些工程状态中电子的寿命。我们还展示了对有限状态填充范围的控制,这是一个参数,在量子多体状态的演变中起关键作用。我们将通过局部状态的运输建模以拆卸并量化寿命限制过程,以说明电子寿命对基础散装带结构的性质的关键依赖性。与散装带的相互作用还产生了负差分电阻,这为工程定制的原子尺度共振隧道二极管开辟了可能的途径,该二极管具有相似的电流 - 电压特性。
Atomically engineered artificial lattices are a useful tool for simulating complex quantum phenomena, but have so far been limited to the study of Hamiltonians where electron-electron interactions do not play a role -- but it's precisely the regime in which these interactions do matter where computational times lend simulations a critical advantage over numerical methods. Here, we propose a new platform for constructing artificial matter that relies on the confinement of field-emission resonances, a class of vacuum-localized discretized electronic states. We use atom manipulation of surface vacancies in a chlorine-terminated Cu(100) surface to reveal square patches of the underlying metal, thereby creating atomically-precise potential wells that host particle-in-a-box modes. By adjusting the shape and size of the confining potential, we can access states with different quantum numbers, making these patches attractive candidates as quantum dots or artificial atoms. We demonstrate that the lifetime of electrons in these engineered states can be extended and tuned through modification of the confining potential, either via atomic assembly or by changing the tip-sample distance. We also demonstrate control over a finite range of state-filling, a parameter which plays a key role in the evolution of quantum many-body states. We model the transport through the localized state to disentangle and quantify the lifetime-limiting processes, illustrating the critical dependency of the electron lifetime on the properties of the underlying bulk band structure. The interplay with the bulk bands also gives rise to negative differential resistance, opening possible avenues for engineering custom atomic-scale resonant tunnelling diodes, which exhibit similar current-voltage characteristics.