论文标题
$ \ bf {mnbi_4te_7} $和$ \ bf {mnbi_6te_ {10}} $中的铁磁 - 抗磁性共存的基态和交换偏见效应
Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in $\bf{MnBi_4Te_7}$ and $\bf{MnBi_6Te_{10}}$
论文作者
论文摘要
Natural superlattice structures $\rm{(MnBi_2Te_4)(Bi_2Te_3)}$$_n$ ($n$ = 1, 2,...), in which magnetic $\rm{MnBi_2Te_4}$ layers are separated by nonmagnetic $\rm{Bi_2Te_3}$ layers, hold band topology, magnetism and reduced层间耦合,为实现外来拓扑量子状态提供了一个有希望的平台。然而,它们在二维极限中的磁性对于进一步探索量子现象至关重要,仍然难以捉摸。 Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in $\rm{MnBi_4Te_7}$ ($n$ = 1) and $\rm{MnBi_6Te_{10}}$ ($n$ = 2).无处不在的MN-BI位点混合改变甚至会改变微妙的SL磁相互作用的符号,从而产生空间不均匀的层间偶联。此外,在$ \ rm {(MNBI_2TE_4)(BI_2TE_3)} $$ _ n $($ n $ = 1,2)中观察到可调交换偏差效应,这是由于FM和AFM组件之间的耦合而产生的。我们的工作重点介绍了一种新的方法来进行磁性微调,并为进一步研究$ \ rm {(MNBI_2TE_4)(BI_2TE_3)} $$ _ N $($ n $ = 1,2,...)以及其磁性应用以及其磁性应用铺平了道路。
Natural superlattice structures $\rm{(MnBi_2Te_4)(Bi_2Te_3)}$$_n$ ($n$ = 1, 2,...), in which magnetic $\rm{MnBi_2Te_4}$ layers are separated by nonmagnetic $\rm{Bi_2Te_3}$ layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in $\rm{MnBi_4Te_7}$ ($n$ = 1) and $\rm{MnBi_6Te_{10}}$ ($n$ = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle inter-SL magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect is observed in $\rm{(MnBi_2Te_4)(Bi_2Te_3)}$$_n$ ($n$ = 1, 2), arising from the coupling between the FM and AFM components in the ground state. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in $\rm{(MnBi_2Te_4)(Bi_2Te_3)}$$_n$ ($n$ = 1, 2,...) as well as their magnetic applications.