论文标题
多级交互与用户行为历史记录
Multi-Level Interaction Reranking with User Behavior History
论文作者
论文摘要
作为多阶段推荐系统(MRS)的最后阶段,重新播放直接影响用户的经验和满意度,从而在MRS中起着至关重要的作用。尽管现有工作有所改善,但三个问题尚未解决。首先,用户的历史行为包含丰富的偏好信息,例如用户的长期和短期兴趣,但并未在重读中充分利用。以前的工作通常会在历史上同样重要的是对待项目,从而忽略了历史和候选项目之间的动态互动。其次,现有的重读模型将重点放在项目级别的学习相互作用上,同时忽略了细粒度的特征级交互。最后,在重新播放之前估算有序初始列表中的重新计分数可能会导致早期得分问题,从而产生次优的重新依据性能。为了解决上述问题,我们提出了一个名为多级交互重新管理(MIR)的框架。 Mir结合了低级的跨项目互动和高级设置到列表的交互,我们将候选项目视为集合,并以时间顺序排列的用户行为历史记录为列表。我们设计了一种新颖的板条结构,用于建模与个性化长期术语兴趣的设定列表相互作用。此外,还合并了功能级相互作用,以捕获项目之间的细粒度影响。我们以这样的方式设计MIR,以使输入项目的任何排列都不会改变输出排名,并且从理论上讲,我们可以证明这一点。对三个公共和专有数据集进行的广泛实验表明,MIR使用各种排名和公用事业指标大大优于最先进的模型。
As the final stage of the multi-stage recommender system (MRS), reranking directly affects users' experience and satisfaction, thus playing a critical role in MRS. Despite the improvement achieved in the existing work, three issues are yet to be solved. First, users' historical behaviors contain rich preference information, such as users' long and short-term interests, but are not fully exploited in reranking. Previous work typically treats items in history equally important, neglecting the dynamic interaction between the history and candidate items. Second, existing reranking models focus on learning interactions at the item level while ignoring the fine-grained feature-level interactions. Lastly, estimating the reranking score on the ordered initial list before reranking may lead to the early scoring problem, thereby yielding suboptimal reranking performance. To address the above issues, we propose a framework named Multi-level Interaction Reranking (MIR). MIR combines low-level cross-item interaction and high-level set-to-list interaction, where we view the candidate items to be reranked as a set and the users' behavior history in chronological order as a list. We design a novel SLAttention structure for modeling the set-to-list interactions with personalized long-short term interests. Moreover, feature-level interactions are incorporated to capture the fine-grained influence among items. We design MIR in such a way that any permutation of the input items would not change the output ranking, and we theoretically prove it. Extensive experiments on three public and proprietary datasets show that MIR significantly outperforms the state-of-the-art models using various ranking and utility metrics.