论文标题

对于受约束的单调变异性不平等的,外部外部和乐观梯度下降算法的紧密近期收敛

Tight Last-Iterate Convergence of the Extragradient and the Optimistic Gradient Descent-Ascent Algorithm for Constrained Monotone Variational Inequalities

论文作者

Cai, Yang, Oikonomou, Argyris, Zheng, Weiqiang

论文摘要

单调变化不平等是数学编程中的一个核心问题,它统一并概括了许多重要的设置,例如平滑的凸优化,零和零游戏,凸孔 - 连接点问题问题等。解决单调变化不平等的方法。尽管历史悠久,但以下主要问题仍然开放。对于单调和Lipschitz的变化不等式的,外部外算法的最后近期收敛速率或乐观的梯度下降算法是什么?我们通过证明外部算法和乐观的梯度下降算法都具有紧密的$ o \ left(\ frac {1} {\ sqrt {\ sqrt {t}} \ right)$ term-Ilter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-clement fations pobsence cobsible bects and and golich,我们可以解决这个开放的问题。 [2020a,b]。我们的速率是根据标准差距函数来衡量的。我们的结果的核心是一个非标准的性能度量 - 切线残差,可以看作是考虑到局部约束的操作员规范的适应。我们使用切线残差(或切线残差的轻微变化)作为我们对外部外算法分析(或乐观的梯度下降算法)的潜在函数,并证明它在两个连续的迭代之间不侵入。

The monotone variational inequality is a central problem in mathematical programming that unifies and generalizes many important settings such as smooth convex optimization, two-player zero-sum games, convex-concave saddle point problems, etc. The extragradient algorithm by Korpelevich [1976] and the optimistic gradient descent-ascent algorithm by Popov [1980] are arguably the two most classical and popular methods for solving monotone variational inequalities. Despite their long histories, the following major problem remains open. What is the last-iterate convergence rate of the extragradient algorithm or the optimistic gradient descent-ascent algorithm for monotone and Lipschitz variational inequalities with constraints? We resolve this open problem by showing that both the extragradient algorithm and the optimistic gradient descent-ascent algorithm have a tight $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence rate for arbitrary convex feasible sets, which matches the lower bound by Golowich et al. [2020a,b]. Our rate is measured in terms of the standard gap function. At the core of our results lies a non-standard performance measure -- the tangent residual, which can be viewed as an adaptation of the norm of the operator that takes the local constraints into account. We use the tangent residual (or a slight variation of the tangent residual) as the the potential function in our analysis of the extragradient algorithm (or the optimistic gradient descent-ascent algorithm) and prove that it is non-increasing between two consecutive iterates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源