论文标题
在广义的Geroch猜想上,以进行完整的自旋歧管
On the generalized Geroch conjecture for complete spin manifolds
论文作者
论文摘要
让$ w $是Gromov-Lawson意义上的封闭区域扩大的歧管,而$ M $是一种非策略旋转歧管,我们表明连接的sum $ m \#w $ note nots nots nots nots nots not not not subly标态曲率没有完全的指标。当$ w = t^n $时,这为旋转设置中的广义Geroch猜想提供了积极的答案。
Let $W$ be a closed area enlargeable manifold in the sense of Gromov-Lawson and $M$ be a noncompact spin manifold, we show that the connected sum $M\# W$ admits no complete metric of positive scalar curvature. When $W=T^n$, this provides a positive answer to the generalized Geroch conjecture in the spin setting.