论文标题

移动性分析工作流程(MAW):用于处理原始移动数据的可访问,可互操作和可重现的容器系统

Mobility Analysis Workflow (MAW): An accessible, interoperable, and reproducible container system for processing raw mobile data

论文作者

Guan, Xiangyang, Chen, Cynthia, Ren, Ian, Yeung, Ka Yee, Hung, Ling-Hong, Lloyd, Wes J.

论文摘要

流动性分析,理解和建模人们从何时,何时,以及如何从一个地方转移到另一个地方的何时,何时,以及如何建模,因为这些信息是对国家多模式运输基础设施进行大规模投资决策的基础。从移动设备使用被动生成的移动数据的最新增长提出了有关使用此类数据来捕获人口的移动性模式的问题,因为:1)尚不清楚各种不同种类的移动数据及其各自的属性; 2)数据预处理和分析方法通常没有明确报告。与所有人都可以访问的移动性数据呼叫(包括数据,方法和结果)相关的移动性分析以及与被动生成的移动数据有关,在不同的计算系统中可互操作的高赌注,其他人可以可重复和重复使用。在这项研究中,开发了一个名为Mobility Analysis工作流程(MAW)的容器系统,该系统已开发了整合数据,方法和结果。 MAW构建基于容器化技术,允许其用户轻松地以Docker容器的形式创建,配置,修改,执行和共享其方法和结果。在Github上还开发了用于操作MAW的工具。 MAW的一种用例是对不同预处理和移动性分析方法对推断迁移率模式的影响的比较分析。这项研究发现,不同的预处理和分析方法确实会对所得的迁移率模式产生影响。 MAW的数据,方法和由MAW促进的数据,方法和产生的移动性模式之间的关系是促进可重复性和可重复使用的重要第一步,并通过被动生成的数据来促进移动性分析中的重复性和可重复性。

Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, where, and how people move from one place to another, is fundamentally important as such information is the basis for large-scale investment decisions on the nation's multi-modal transportation infrastructure. Recent rise of using passively generated mobile data from mobile devices have raised questions on using such data for capturing the mobility patterns of a population because: 1) there is a great variety of different kinds of mobile data and their respective properties are unknown; and 2) data pre-processing and analysis methods are often not explicitly reported. The high stakes involved with mobility analysis and issues associated with the passively generated mobile data call for mobility analysis (including data, methods and results) to be accessible to all, interoperable across different computing systems, reproducible and reusable by others. In this study, a container system named Mobility Analysis Workflow (MAW) that integrates data, methods and results, is developed. Built upon the containerization technology, MAW allows its users to easily create, configure, modify, execute and share their methods and results in the form of Docker containers. Tools for operationalizing MAW are also developed and made publicly available on GitHub. One use case of MAW is the comparative analysis for the impacts of different pre-processing and mobility analysis methods on inferred mobility patterns. This study finds that different pre-processing and analysis methods do have impacts on the resulting mobility patterns. The creation of MAW and a better understanding of the relationship between data, methods and resulting mobility patterns as facilitated by MAW represent an important first step toward promoting reproducibility and reusability in mobility analysis with passively-generated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源