论文标题

检索逆Seesaw参数空间用于狄拉克相诱饵发生

Retrieving Inverse Seesaw parameter space for Dirac Phase Leptogenesis

论文作者

Mukherjee, Ananya, Narendra, Nimmala

论文摘要

这项工作解决了\ textIt {dirac相瘦生成}的生存能力,在轻度MajoraNA中微子通过逆Seesaw(ISS)机制获得质量的情况下。我们表明,在ISS中成功的诱导生成,仅通过DIRAC CP阶段驱动(仅),可以通过参与旋转矩阵的非正统形式的旋转矩阵$ r = e^{i {\ bf a}}} \,\,\,\,\,\,(e^{e^{\ bf a})$ casasas-armara parametiasiation。 $ r $的这种特殊结构被证明是在纯ISS场景中解释宇宙的巴属不对称性的人工制品。我们在这里详细介绍了$ r $矩阵参数空间的限制区域,这对于成功的瘦素发生至关重要。 $ r $ -Matrix参数空间有助于挽救成功的瘦素发生所需的ISS参数空间。 ISS设置中否则这一发现是前所未有的。利用结果$ r $矩阵参数空间,我们计算了LFV衰变$μ\ rightarroweγ$的分支比率。这说明了$ r $ -matrix参数空间的间接探针。从瘦素发生参数空间获得的分支比率超过了现有在分支比的结合,从而导致线性和反seesaw的组合效应的情况。我们还在这里报告说,对于$ r = e^{i {\ bf a}} $选择瘦素生成需要狄拉克CP阶段($δ$)左右左右$π/2 $,尽管对于以后的选择,对$δ$的约束非常放松。

This work addresses the viability of \textit {Dirac phase leptogenesis}, in a scenario where the light Majorana neutrinos acquire masses by the inverse seesaw (ISS) mechanism. We show that, a successful leptogenesis in the ISS, driven (only) by the Dirac CP phase can be achieved with the involvement of an unorthodox form of the rotational matrix $R = e^{i{\bf A}} \,\,\,(e^{\bf A})$ in the Casas-Ibarra parametrisation. This particular structure of $R$ turns out to be an artefact in explaining the observed baryon asymmetry of the Universe in a pure ISS scenario. We detail here the confined regions of the $R$ matrix parameter space, essential for a successful leptogenesis. The $R$-matrix parameter space assists in rescuing the ISS parameter space needed for successful leptogenesis. This finding is otherwise unprecedented in the ISS set up. Making use of the resulted $R$ matrix parameter space we have calculated the branching ratio for the LFV decay $μ\rightarrow eγ$. This accounts for an indirect probe of the $R$-matrix parameter space. The branching ratio obtained from the leptogenesis parameter space surpasses the existing bound on the branching ratio that resulted in a scenario of combined effect of linear and inverse seesaw. We also report here that, for $R = e^{i{\bf A}}$ choice leptogenesis demands the Dirac CP phase ($δ$) to oscillate around $π/2$, although for the later choice the constraint on $δ$ is much relaxed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源