论文标题
马赫2.0超音速涡轮级联中的冲击边界层相互作用的不稳定
Unsteadiness of Shock-Boundary Layer Interactions in a Mach 2.0 Supersonic Turbine Cascade
论文作者
论文摘要
通过壁溶解的大型涡流模拟研究了基于轴向和弦的超音速涡轮级联和雷诺数字395,000的超音速涡轮级联和雷诺数字395,000的物理学的物理。特别注意使用流动可视化,光谱分析,时空跨相关性和流模态分解的分离气泡的低频动力学的表征。平均流场显示在机翼两侧形成的不同冲击结构。在吸力侧,倾斜的冲击会影响湍流边界层,而马赫反射与压力侧边界层相互作用。相对于更多规范的情况,在当前涡轮级联中发生的相互作用显示出相似性和差异。例如,冲击/气泡运动的特征频率与规范案例文献中所述的特征频率相当。然而,吸力侧气泡导致压缩波不融合成分离冲击,尽管马赫反射产生了强烈的正常冲击,但在压力侧形成了薄的气泡。瞬时流量可视化说明了传入的边界层上的延长流向结构及其与冲击和分离气泡的相互作用。时空互相关表明,近壁条纹驱动了吸气侧分离气泡的运动,这又促进了重新分析冲击和剪切层的振荡。 SBLI中的有组织运动及其相应的特征频率和空间支持使用适当的正交分解识别。
The physics of shock-boundary layer interactions (SBLIs) in a supersonic turbine cascade at Mach 2.0 and Reynolds number 395,000, based on the axial chord, is investigated through a wall-resolved large eddy simulation. Special attention is given to the characterization of the low-frequency dynamics of the separation bubbles using flow visualization, spectral analysis, space-time cross correlations, and flow modal decomposition. The mean flowfield shows different shock structures formed on both sides of the airfoil. On the suction side, an oblique shock impinges on the turbulent boundary layer, whereas a Mach reflection interacts with the pressure side boundary layer. The interactions taking place in the present turbine cascade show similarities and discrepancies with respect to more canonical cases. For example, the characteristic frequencies of the shock/bubble motions are comparable to those described in the literature of canonical cases. However, the suction side bubble leads to compression waves that do not coalesce into a separation shock, and a thin bubble forms on the pressure side despite the strong normal shock from the Mach reflection. Instantaneous flow visualizations illustrate elongated streamwise structures on the incoming boundary layers and their interactions with the shocks and separation bubbles. The space-time cross-correlations reveal that the near-wall streaks drive the motion of the suction side separation bubble, which in turn promotes oscillations of the reattachment shock and shear layer flapping. Organized motions in the SBLIs and their corresponding characteristic frequencies and spatial support are identified using proper orthogonal decomposition.