论文标题

整数的通用通用编码

Generalized Universal Coding of Integers

论文作者

Yan, Wei, Lin, Sian-Jheng, Han, Yunghsiang S.

论文摘要

整数〜(UCI)的通用编码是一类可变长度代码,因此,预期的代码字长度与$ \ max \ {1,h(p)\} $的比率在恒定因素之内,其中$ h(p)$是减少概率分布$ p $ p $的shannon entropy。但是,如果我们考虑预期的代码字长度与$ h(p)$的比率,那么当$ h(p)$趋于零时,该比率倾向于使用UCI。为了解决此问题,本文介绍了一类代码,称为整数〜(GUCI)的通用通用编码,因此,预期的代码文长与$ h(p)$的比率在恒定的因子$ k $之内。首先,提出了GUCI的定义,并引入了GUCI的编码结构。接下来,我们提出一类Guci $ \ Mathcal {C} $,以实现扩展因子$ k _ {\ MathCal {c}}} = 2 $,并证明最佳GUCI在范围内$ 1 \ leq k _ {\ Mathcal {\ Mathcal {C}}}}}^{*}^{*} \ leq leq 2 $。然后,通过比较UCI和GUCI,我们表明,当熵很大或$ p(0)$不大时,在某些情况下,Guci的平均编码长度较短。最后,提出了渐近最佳的GUCI。

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源