论文标题

使用因果树方法学习最佳动态治疗方案

Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine

论文作者

Blümlein, Theresa, Persson, Joel, Feuerriegel, Stefan

论文摘要

动态治疗方案(DTR)用于医学中,通过考虑患者异质性来为患者量身定制治疗决策。但是,学习最佳DTR的常见方法存在缺点:它们通常基于结果预测而不是治疗效应估计,或者它们使用对现代电子健康记录中患者数据限制的线性模型。为了解决这些缺点,我们开发了两种新型方法,用于学习有效处理复杂患者数据的最佳DTR。我们称我们的方法DTR-CT和DTR-CF。我们的方法基于使用因果树方法(特别是因果树和因果林)对异质治疗效应进行数据驱动的估计,该方法学习非线性关系,控制时间变化的混杂,是双重的,是强大的,并且可以解释。据我们所知,我们的论文是第一个调整因果树方法来学习最佳DTR的论文。我们使用合成数据评估我们提出的方法,然后将其应用于重症监护病房的现实数据。我们的方法在累积的遗憾和最佳决定的百分比方面优于最先进的基线。我们的工作改善了电子健康记录的治疗建议,因此与个性化医学直接相关。

Dynamic treatment regimes (DTRs) are used in medicine to tailor sequential treatment decisions to patients by considering patient heterogeneity. Common methods for learning optimal DTRs, however, have shortcomings: they are typically based on outcome prediction and not treatment effect estimation, or they use linear models that are restrictive for patient data from modern electronic health records. To address these shortcomings, we develop two novel methods for learning optimal DTRs that effectively handle complex patient data. We call our methods DTR-CT and DTR-CF. Our methods are based on a data-driven estimation of heterogeneous treatment effects using causal tree methods, specifically causal trees and causal forests, that learn non-linear relationships, control for time-varying confounding, are doubly robust, and explainable. To the best of our knowledge, our paper is the first that adapts causal tree methods for learning optimal DTRs. We evaluate our proposed methods using synthetic data and then apply them to real-world data from intensive care units. Our methods outperform state-of-the-art baselines in terms of cumulative regret and percentage of optimal decisions by a considerable margin. Our work improves treatment recommendations from electronic health record and is thus of direct relevance for personalized medicine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源