论文标题
有效提取具有缺陷的系统中的共振状态
Efficient extraction of resonant states in systems with defects
论文作者
论文摘要
我们引入了一种新的数值方法来计算晶体中局部缺陷引起的共振。该方法求解缺陷区域中的积分方程,以计算分解的分析延续。这种方法使人们能够以“共振来源”的形式表达共振,该功能严格局限于缺陷区域。积分方程式的内核,可用于这种源术语,是完美晶体的绿色函数,我们显示的可以通过对布里素区域的复杂变形(名为Brillouin复数变形(BCD))进行有效计算,从而扩展到相互范围,从而扩展到相互的空间。
We introduce a new numerical method to compute resonances induced by localized defects in crystals. This method solves an integral equation in the defect region to compute analytic continuations of resolvents. Such an approach enables one to express the resonance in terms of a "resonance source", a function that is strictly localized within the defect region. The kernel of the integral equation, to be applied on such a source term, is the Green function of the perfect crystal, which we show can be computed efficiently by a complex deformation of the Brillouin zone, named Brillouin Complex Deformation (BCD), thereby extending to reciprocal space the concept of complex coordinate transformations.