论文标题

MARF:使用2D激光扫描仪的多尺度自适应开关随机森林用于腿部检测

MARF: Multiscale Adaptive-switch Random Forest for Leg Detection with 2D Laser Scanners

论文作者

Wang, Tianxi, Xue, Feng, Zhou, Yu, Ming, Anlong

论文摘要

对于基于2D激光的任务,例如,人们的检测和人们跟踪,腿部检测通常是第一步。因此,它在确定人们发现和人们跟踪的表现方面具有很大的重视。但是,许多腿检测器忽略了不可避免的噪声和激光扫描的多尺度特征,这使它们对点云的不可靠特征敏感,并进一步降低了腿部检测器的性能。在本文中,我们提出了一个多尺度的自适应切换随机森林(MARF)来克服这两个挑战。首先,自适应开关决策树旨在使用噪音敏感的特征来进行加权分类和噪声变量特征来进行二进制分类,这使得我们的探测器对噪声的表现更加强大。其次,考虑到2D点云的稀疏性与激光束的长度成正比的多尺寸特性,我们设计了一个多尺度随机森林结构,以在不同的距离内检测腿。此外,提出的方法使我们能够从点云中发现比其他人更稀疏的人腿。因此,与挑战性的移动腿数据集上的其他最先进的腿检测器相比,我们的方法显示出改善的性能,并在低计算笔记本电脑上以60+ fps的速度保留整个管道。此外,我们进一步将拟议的MARF应用于人们的检测和跟踪系统,从而在所有指标中取得了可观的收益。

For the 2D laser-based tasks, e.g., people detection and people tracking, leg detection is usually the first step. Thus, it carries great weight in determining the performance of people detection and people tracking. However, many leg detectors ignore the inevitable noise and the multiscale characteristics of the laser scan, which makes them sensitive to the unreliable features of point cloud and further degrades the performance of the leg detector. In this paper, we propose a multiscale adaptive-switch Random Forest (MARF) to overcome these two challenges. Firstly, the adaptive-switch decision tree is designed to use noisesensitive features to conduct weighted classification and noiseinvariant features to conduct binary classification, which makes our detector perform more robust to noise. Secondly, considering the multiscale property that the sparsity of the 2D point cloud is proportional to the length of laser beams, we design a multiscale random forest structure to detect legs at different distances. Moreover, the proposed approach allows us to discover a sparser human leg from point clouds than others. Consequently, our method shows an improved performance compared to other state-of-the-art leg detectors on the challenging Moving Legs dataset and retains the whole pipeline at a speed of 60+ FPS on lowcomputational laptops. Moreover, we further apply the proposed MARF to the people detection and tracking system, achieving a considerable gain in all metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源