论文标题

HASA:与超声图像中棘球菌分类和卵巢分割的聚合策略的混合体系结构搜索

HASA: Hybrid Architecture Search with Aggregation Strategy for Echinococcosis Classification and Ovary Segmentation in Ultrasound Images

论文作者

Qian, Jikuan, Li, Rui, Yang, Xin, Huang, Yuhao, Luo, Mingyuan, Lin, Zehui, Hong, Wenhui, Huang, Ruobing, Fan, Haining, Ni, Dong, Cheng, Jun

论文摘要

与手工的功能不同,深度神经网络可以自动从数据中学习特定于任务的功能。由于这种数据驱动的性质,他们在各个领域取得了巨大的成功。但是,手动设计和合适的网络体系结构的选择是耗时的,需要人类专家的大量努力。为了解决这个问题,研究人员提出了神经体系结构搜索(NAS)算法,该算法可以自动生成网络体系结构,但如果从头开始搜索,则会遭受巨大的计算成本和不稳定性。在本文中,我们提出了一个用于超声(US)图像分类和分割的混合NAS框架。混合框架由预先训练的主链和几个搜索的单元格(即网络构建块)组成,该电源框架利用了NAS的优势和现有卷积神经网络的专家知识。具体而言,将两个有效且轻巧的操作,一个混合的深度卷积操作员和挤压和激发块引入候选操作中,以增强搜索细胞的多样性和容量。这两个操作不仅降低了模型参数,还可以提高网络性能。此外,我们为搜索细胞提出了重新聚集策略,旨在进一步提高不同视力任务的性能。我们在两个大型US图像数据集上测试了我们的方法,其中包括一个9级的棘球病数据集,其中包含9566张图像进行分类和一个包含3204张图像进行分割的卵巢数据集。消融实验和与其他手工制作或自动搜索的体系结构的比较表明,我们的方法可以为上述US图像分类和细分任务生成更强大且轻巧的模型。

Different from handcrafted features, deep neural networks can automatically learn task-specific features from data. Due to this data-driven nature, they have achieved remarkable success in various areas. However, manual design and selection of suitable network architectures are time-consuming and require substantial effort of human experts. To address this problem, researchers have proposed neural architecture search (NAS) algorithms which can automatically generate network architectures but suffer from heavy computational cost and instability if searching from scratch. In this paper, we propose a hybrid NAS framework for ultrasound (US) image classification and segmentation. The hybrid framework consists of a pre-trained backbone and several searched cells (i.e., network building blocks), which takes advantage of the strengths of both NAS and the expert knowledge from existing convolutional neural networks. Specifically, two effective and lightweight operations, a mixed depth-wise convolution operator and a squeeze-and-excitation block, are introduced into the candidate operations to enhance the variety and capacity of the searched cells. These two operations not only decrease model parameters but also boost network performance. Moreover, we propose a re-aggregation strategy for the searched cells, aiming to further improve the performance for different vision tasks. We tested our method on two large US image datasets, including a 9-class echinococcosis dataset containing 9566 images for classification and an ovary dataset containing 3204 images for segmentation. Ablation experiments and comparison with other handcrafted or automatically searched architectures demonstrate that our method can generate more powerful and lightweight models for the above US image classification and segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源