论文标题

部分可观测时空混沌系统的无模型预测

Self-Supervised Traffic Advisors: Distributed, Multi-view Traffic Prediction for Smart Cities

论文作者

Sun, Jiankai, Kousik, Shreyas, Fridovich-Keil, David, Schwager, Mac

论文摘要

连接和自动驾驶汽车(CAVS)正在越来越广泛地部署,但是目前尚不清楚如何最好地部署智能基础架构以最大程度地发挥其功能。一个关键的挑战是确保骑士能够可靠地感知其他代理,尤其是遮挡的代理。另一个挑战是渴望智能基础架构具有自主性,并且很容易扩展到广阔的部署,类似于现代交通信号灯。目前的工作提出了自我监督的交通顾问(SSTA),这是一种基础架构边缘设备概念,该概念利用与通信和共同训练框架共同提供自我监督的视频预测,以启用整个智能城市的自动预测流量。 SSTA是一款静态安装的摄像头,可俯瞰复杂的交通流量或复杂流量的区域,可以预测随着未来的视频帧的形式,并学会了与相邻的SSTA进行通信,以启用预测流量,然后才能出现在视野(FOV)中。拟议的框架旨在达到三个目标:(1)设备间的通信以实现高质量预测,(2)对设备数量的可伸缩性,以及(3)终身在线学习以确保对不断变化的环境的适应性。最后,SSTA可以直接广播其未来预测的视频框架,以供骑士进行自己的后期处理以进行控制。

Connected and Autonomous Vehicles (CAVs) are becoming more widely deployed, but it is unclear how to best deploy smart infrastructure to maximize their capabilities. One key challenge is to ensure CAVs can reliably perceive other agents, especially occluded ones. A further challenge is the desire for smart infrastructure to be autonomous and readily scalable to wide-area deployments, similar to modern traffic lights. The present work proposes the Self-Supervised Traffic Advisor (SSTA), an infrastructure edge device concept that leverages self-supervised video prediction in concert with a communication and co-training framework to enable autonomously predicting traffic throughout a smart city. An SSTA is a statically-mounted camera that overlooks an intersection or area of complex traffic flow that predicts traffic flow as future video frames and learns to communicate with neighboring SSTAs to enable predicting traffic before it appears in the Field of View (FOV). The proposed framework aims at three goals: (1) inter-device communication to enable high-quality predictions, (2) scalability to an arbitrary number of devices, and (3) lifelong online learning to ensure adaptability to changing circumstances. Finally, an SSTA can broadcast its future predicted video frames directly as information for CAVs to run their own post-processing for the purpose of control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源