论文标题

部分可观测时空混沌系统的无模型预测

Multi-modal electron microscopy study on decoherence sources and their stability in Nb based superconducting qubit

论文作者

Oh, Jin-Su, Fang, Xiaotian, Kim, Tae-Hoon, Lynn, Matt, Kramer, Matt, Zarea, Mehdi, Sauls, James A., Romanenko, A., Posen, S., Grassellino, A., Kopas, Cameron J., Field, Mark, Marshall, Jayss, Cansizoglu, Hilal, Mutus, Joshua Y., Reagor, Matthew, Zhou, Lin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Niobium is commonly used for superconducting quantum systems as readout resonators, capacitors, and interconnects. The coherence time of the superconducting qubits is mainly limited by microwave dissipation attributed to two-level system defects at interfaces, such as the Nb/Si and Nb/air interface. One way to improve the Nb/air interface quality is by thermal annealing, as shown by extensive studies in 3D superconducting radio frequency (SRF) cavities. However, it is unclear how the microstructure and chemistry of the interface structures change during heat treatment. To address this knowledge gap, we comprehensively characterized Nb films deposited on Si wafers by physical vapor deposition, including (1) an Nb film from a transmon and (2) an Nb film without any patterning step, using an aberration-corrected transmission electron microscope. Both Nb films exhibit columnar growth with strong [110] textures. There is a double layer between the Nb film and Si substrate, which are amorphous niobium silicides with different Nb and Si concentrations. After in-situ heating of the heterostructure at 360°C inside the microscope, the composition of the double layers at the Nb-Si interface remains almost the same despite different thickness changes. The initial amorphous niobium oxide layer on Nb surface decomposes into face-centered cubic Nb nanograins in the amorphous Nb-O matrix upon heating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源