论文标题

部分可观测时空混沌系统的无模型预测

New regularity estimates for fully nonlinear elliptic equations

论文作者

Nascimento, Thialita M., Teixeira, Eduardo V.

论文摘要

我们为完全非线性椭圆运算符的粘度超溶液建立了新的定量HESSIAN集成性估计值。作为推论,我们表明,在著名的$ w^{2,\ varepsilon} $的最佳Hessian Hessian Power Entigability $ \ varepsilon = \ varepsilon(λ,λ,λ,n)$中)\ right)^{n-1}} {\ ln n n^4} \ cdot \ left(\fracλλλ\ right)常数。特别是,$ \ left(\fracλλ\ right) ^{n-1} \ varepsilon(λ,λ,n)$ bull,为$ n \ to \ infty $;先前的结果产生了这种数量的快速衰变。上层估计改进了阿姆斯特朗,西尔维斯特尔和智能的估计值:1103.3677

We establish new quantitative Hessian integrability estimates for viscosity supersolutions of fully nonlinear elliptic operators. As a corollary, we show that the optimal Hessian power integrability $\varepsilon = \varepsilon(λ, Λ, n)$ in the celebrated $W^{2, \varepsilon}$-regularity estimate satisfies $$\frac{ \left (1+ \frac{2}{3}\left(1- \fracλΛ \right )\right )^{n-1}}{\ln n^4} \cdot \left( \fracλΛ \right) ^{n-1} \le \varepsilon \le \frac{nλ}{(n-1)Λ+λ}, $$ where $n\ge 3$ is the dimension and $0< λ< Λ$ are the ellipticity constants. In particular, $\left( \fracΛλ \right) ^{n-1} \varepsilon(λ, Λ, n)$ blows-up, as $n\to\infty$; previous results yielded fast decay of such a quantity. The upper estimate improves the one obtained by Armstrong, Silvestre, and Smart in arXiv:1103.3677

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源