论文标题

从$ m $ $ $ $ $ $ $ $ $ $ $ $ - 通过borda Counting的排名

On Top-$k$ Selection from $m$-wise Partial Rankings via Borda Counting

论文作者

Chen, Wenjing, Zhou, Ruida, Tian, Chao, Shen, Cong

论文摘要

我们分析了非参数模型中Borda计数算法的性能。该算法需要利用$ M $尺寸的子集内项目的概率排名,以准确确定哪些项目是总计$ n $项目中的总体上$ k $项目。 Borda计数算法只是从这些部分排名观测值中计算每个项目的累积分数。这概括了Shah等人先前的类似性质的工作。使用概率成对比较数据。 Borda计数算法的性能在很大程度上取决于$ k $ -th项目与$(K+1)$ - TH项目之间的关联分数分离$Δ_K$。具体来说,我们表明,如果$δ_k$大于某些值,那么算法选择的顶部$ k $项目几乎是渐近准确的。如果$Δ_K$低于某些值,则结果将不准确,概率恒定。在$ M = 2 $的特殊情况下,即成对比较,所得结合比Shah等人给出的结合更紧,导致误差概率上限和下限之间的间隙降低。这些结果进一步扩展到了近似$ K $选择设置。与基于光谱MLE的算法相比,数值实验证明了Borda计数算法的有效性和准确性,尤其是当数据不一定遵循假定的参数模型时。

We analyze the performance of the Borda counting algorithm in a non-parametric model. The algorithm needs to utilize probabilistic rankings of the items within $m$-sized subsets to accurately determine which items are the overall top-$k$ items in a total of $n$ items. The Borda counting algorithm simply counts the cumulative scores for each item from these partial ranking observations. This generalizes a previous work of a similar nature by Shah et al. using probabilistic pairwise comparison data. The performance of the Borda counting algorithm critically depends on the associated score separation $Δ_k$ between the $k$-th item and the $(k+1)$-th item. Specifically, we show that if $Δ_k$ is greater than certain value, then the top-$k$ items selected by the algorithm is asymptotically accurate almost surely; if $Δ_k$ is below certain value, then the result will be inaccurate with a constant probability. In the special case of $m=2$, i.e., pairwise comparison, the resultant bound is tighter than that given by Shah et al., leading to a reduced gap between the error probability upper and lower bounds. These results are further extended to the approximate top-$k$ selection setting. Numerical experiments demonstrate the effectiveness and accuracy of the Borda counting algorithm, compared with the spectral MLE-based algorithm, particularly when the data does not necessarily follow an assumed parametric model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源