论文标题

无监督异常和通过多元高斯化变化检测

Unsupervised Anomaly and Change Detection with Multivariate Gaussianization

论文作者

Padrón-Hidalgo, José A., Laparra, Valero, Camps-Valls, Gustau

论文摘要

异常检测是一个深入研究的领域。鉴于数据的高维度,识别数据/图像中的低概率事件是一个具有挑战性的问题,尤其是当没有(或少量)有关异常的信息可获得先验时。尽管有很多方法可用,但绝大多数方法并不能很好地扩展到大型数据集,并且需要选择某些(通常很关键的)超参数。因此,严格必要的是无监督和计算有效的检测方法。我们提出了一种无监督的方法,用于通过多元高斯化方法来检测遥感图像的异常和变化,该方法允许准确估算多元密度,这是统计和机器学习中的长期问题。该方法将任意复杂的多元数据转换为多元高斯分布。由于转换是可区分的,因此通过应用变量公式的更改,可以估计原始域的任何点的概率。假设很简单:估计概率低的像素被认为是异常。我们的方法可以描述任何多元分布,有效地利用内存和计算资源,并且无参数。我们显示了该方法在涉及异常检测和不同遥感图像集中变化检测的实验中的效率。结果表明,我们的方法在异常和更改检测方案的检测能力方面优于其他线性和非线性方法,显示出对维度和样本大小的鲁棒性和可扩展性。

Anomaly detection is a field of intense research. Identifying low probability events in data/images is a challenging problem given the high-dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary. We propose an unsupervised method for detecting anomalies and changes in remote sensing images by means of a multivariate Gaussianization methodology that allows to estimate multivariate densities accurately, a long-standing problem in statistics and machine learning. The methodology transforms arbitrarily complex multivariate data into a multivariate Gaussian distribution. Since the transformation is differentiable, by applying the change of variables formula one can estimate the probability at any point of the original domain. The assumption is straightforward: pixels with low estimated probability are considered anomalies. Our method can describe any multivariate distribution, makes an efficient use of memory and computational resources, and is parameter-free. We show the efficiency of the method in experiments involving both anomaly detection and change detection in different remote sensing image sets. Results show that our approach outperforms other linear and nonlinear methods in terms of detection power in both anomaly and change detection scenarios, showing robustness and scalability to dimensionality and sample sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源