论文标题
全景,实例和语义关系:一种关系上下文编码器,以增强全景分割
Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation
论文作者
论文摘要
本文提出了一个新颖的框架,以整合语义和实例上下文以进行全景分段。在现有的作品中,通常使用共享的骨干来提取两种东西(例如,诸如车辆)和东西(无数类,例如道路)的功能。但是,这无法捕获它们之间的丰富关系,可以用来增强视觉理解和细分性能。为了解决这一缺点,我们提出了一种新颖的综合,实例和语义关系(PISR)模块来利用此类上下文。首先,我们生成全面编码,以总结语义类的关键特征和预测实例。然后将跨关系注意力(PRA)模块应用于主链的编码和全局特征图。它产生了一个捕获1)语义类别和实例之间的关系的功能图,以及2)这些综合类别和空间特征之间的关系。 PISR还会自动学习专注于更重要的实例,从而使其适用于关系注意模块中使用的实例数量。此外,PISR是一个通用模块,可应用于任何现有的泛群分割体系结构。通过大量评估CityScapes,Coco和ADE20K(Coco和ADE20K)等综合分割基准,我们表明PISR对现有方法有了很大的改进。
This paper presents a novel framework to integrate both semantic and instance contexts for panoptic segmentation. In existing works, it is common to use a shared backbone to extract features for both things (countable classes such as vehicles) and stuff (uncountable classes such as roads). This, however, fails to capture the rich relations among them, which can be utilized to enhance visual understanding and segmentation performance. To address this shortcoming, we propose a novel Panoptic, Instance, and Semantic Relations (PISR) module to exploit such contexts. First, we generate panoptic encodings to summarize key features of the semantic classes and predicted instances. A Panoptic Relational Attention (PRA) module is then applied to the encodings and the global feature map from the backbone. It produces a feature map that captures 1) the relations across semantic classes and instances and 2) the relations between these panoptic categories and spatial features. PISR also automatically learns to focus on the more important instances, making it robust to the number of instances used in the relational attention module. Moreover, PISR is a general module that can be applied to any existing panoptic segmentation architecture. Through extensive evaluations on panoptic segmentation benchmarks like Cityscapes, COCO, and ADE20K, we show that PISR attains considerable improvements over existing approaches.