论文标题
脑MRI数据预处理肿瘤分割的预处理可忽略不计
Negligible effect of brain MRI data preprocessing for tumor segmentation
论文作者
论文摘要
磁共振成像(MRI)数据是由于设备制造商,扫描协议和受试者间变异性的差异而具有异质性的。减轻MR图像异质性的一种常规方法是应用预处理转换,例如解剖学比对,体素重新采样,信号强度均衡,图像降解和目标区域的定位。尽管预处理管道标准化了图像外观,但它对图像分割的质量和深度神经网络中其他下游任务的影响从未经过严格研究。 我们在三个公开可用数据集上进行实验,并评估不同预处理步骤在内部和数据库间训练方案中的效果。我们的结果表明,最流行的标准化步骤没有为网络性能增加价值。此外,预处理可以妨碍模型性能。我们建议,由于信号差异降低了图像标准化,图像强度归一化方法不会导致模型准确性。最后,我们表明,如果根据估计的肿瘤体积进行测量,则颅骨在数据预处理中的贡献几乎可以忽略不计。 我们表明,准确的深度学习分析的唯一必不可少的转换是整个数据集的体素间距的统一。相比之下,不需要以非刚性地图集的形式进行主题间的解剖对准,并且强度均衡步骤(DENOSING,偏置场校正和直方图匹配)并不能提高模型的性能。该研究代码可在线访问https://github.com/medimair/brain-mri-processing-pipeline
Magnetic resonance imaging (MRI) data is heterogeneous due to differences in device manufacturers, scanning protocols, and inter-subject variability. A conventional way to mitigate MR image heterogeneity is to apply preprocessing transformations such as anatomy alignment, voxel resampling, signal intensity equalization, image denoising, and localization of regions of interest. Although a preprocessing pipeline standardizes image appearance, its influence on the quality of image segmentation and on other downstream tasks in deep neural networks has never been rigorously studied. We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in intra- and inter-dataset training scenarios. Our results demonstrate that most popular standardization steps add no value to the network performance; moreover, preprocessing can hamper model performance. We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization. Finally, we show that the contribution of skull-stripping in data preprocessing is almost negligible if measured in terms of estimated tumor volume. We show that the only essential transformation for accurate deep learning analysis is the unification of voxel spacing across the dataset. In contrast, inter-subjects anatomy alignment in the form of non-rigid atlas registration is not necessary and intensity equalization steps (denoising, bias-field correction and histogram matching) do not improve models' performance. The study code is accessible online https://github.com/MedImAIR/brain-mri-processing-pipeline