论文标题

圆树和随机组中的共形尺寸:低密度至高密度

Round Trees and Conformal Dimension in Random Groups: low density to high density

论文作者

Frost, Jordan

论文摘要

我们研究了Gromov密度模型$ \ MATHCAL {g}^d_ {m,l} $ a $ m \ geq 2 $固定发电机,密度$ 0 <d <1/2 $和relator length Lengthe $ l \ f to \ fty fty $ ftty $。我们的主要结果是所有密度的$ l $中的下边线线性$ 0 <d <1/2 $,通过建造直接来自较低密度的gromov随机组而实现的未呈现的圆形树。

We investigate conformal dimension for the class of infinite hyperbolic groups in the Gromov density model $\mathcal{G}^d_{m,l}$ of random groups with $m \geq 2$ fixed generators, density $0 < d < 1/2$ and relator length $l \to \infty$. Our main result is a lower bound linear in $l$ at all densities $0 < d < 1/2$ achieved by building undistorted round trees coming directly from lower density Gromov random groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源