论文标题
通过磁共振成像对聚合物多核膜中润湿模式的原位研究
In-situ investigation of wetting patterns in polymeric multibore membranes via magnetic resonance imaging
论文作者
论文摘要
润湿膜以置换空气或调节液体对于利用过滤膜的复杂孔隙率很重要。这项研究揭示了基于多层膜的过滤模块中润湿的细节。使用磁共振成像(MRI),我们在死末端渗透模式下量化初始膜润湿期间的流体分布模式。研究了润湿膜纤维的硫酸盐水溶液的时空演化,作为施加通量,堆积密度和沿膜模块长度的位置的函数。检查了三个初始润湿条件:递送状态膜,乙醇洗涤和干燥(充气)膜和充满乙醇的膜。由于界面和聚合物肿胀效应,观察到润湿模式的显着变化。这项原位研究表明,即使在200 LMH的高通量下,也可以在六个小时内进行缓慢的润湿进展,并获得更多的润湿。然而,随着不断发展的润湿模式取决于助剂,助焊剂的增加会导致更快的润湿动力学。多层纤维的填料密度另外通过转移普遍的压力条件来影响润湿动力学。尽管在死末端模式下,润湿进展沿膜模块的长度是不均匀的。除了这项参数研究外,还研究了不同的前润湿剂对位移行为的影响。这项研究有助于理解(a)在死末端过滤中多层膜内部的复杂润湿现象,(b)由于邻近的膜而引起的膜与周围环境的相互作用,以及(c)所用流体系统对所得润湿模式的位移。
Wetting of the membrane to displace air or conditioning liquids is important to exploit the complex porosity of a filtration membrane. This study reveals the details of wetting in multibore membrane-based filtration modules. Using magnetic resonance imaging (MRI), we quantify the fluid distribution patterns during initial membrane wetting in dead-end permeation mode. The spatio-temporal evolution of aqueous copper sulfate solution wetting the membrane fibers was investigated as a function of the applied flux, packing density, and position along the membrane module length. Three initial wetting conditions were examined: delivery-state membranes, ethanol-washed and dried (air-filled) membranes, and ethanol-filled membranes. Significant changes in wetting patterns were observed due to interfacial and polymer swelling effects. This in-situ investigation reveals a slow wetting progression over six hours and more to obtain complete wetting, even at high fluxes of 200 LMH. However, an increased flux leads to faster wetting kinetics as the evolving wetting patterns are flux dependent. The packing density of the multibore fibers additionally impacts the wetting kinetics by shifting the prevalent pressure conditions. Although in dead-end mode, the wetting progression is non-uniform along the membrane module length. In addition to this parameter study, different pre-wetting agents' effect on the displacement behavior was investigated in depth. This study helps to understand (a) complex wetting phenomena inside multibore membranes in dead-end filtration, (b) the membranes' interaction with their surroundings due to neighboring membranes, and (c) the effect of the used fluid system for displacement on the resulting wetting patterns.