论文标题
在分析功能上
On the analytic functions
论文作者
论文摘要
让$ω$是复杂平面上连接的有限域,$ s $是其边界,它已关闭,星形,$ c^1 $ -smooth,$ h(ω)$是$ω$函数中的一组分析(Holomorthic)。本文的目的是证明l^1(s)$中的任意$ f \满足条件$ \ int_sf(s)ds = 0 $,可以是h(ω)$中$ f \ a $ f \ a的边界值。
Let $Ω$ be a connected bounded domain on the complex plane, $S$ be its boundary, which is closed, star-shaped, $C^1$-smooth, and $H(Ω)$ is the set of analytic (holomorphic) in $Ω$ functions. The aim of this paper is to prove that an arbitrary $f\in L^1(S)$, satisfying the condition $\int_Sf(s)ds=0$, can be boundary value of an $f\in H(Ω)$.