论文标题
基于PEDCC损坏的分类器中有效分布式检测
Effective Out-of-Distribution Detection in Classifier Based on PEDCC-Loss
论文作者
论文摘要
深层神经网络在开放世界中遭受了过度自信的问题,这意味着分类器可能会对分布(OOD)样本产生自信,不正确的预测。因此,根据人工智能的安全考虑,检测这些样本远离培训分配是一项紧急且具有挑战性的任务。许多基于神经网络的当前方法主要依赖于复杂的处理策略,例如温度缩放和输入预处理,以获得令人满意的结果。在本文中,我们提出了一种有效的算法,用于检测使用PEDCC损失的分布示例。我们通过数学上分析了PEDCC(预定义的分布类质心)分类器的置信分数输出的性质,然后构建一个更有效的评分函数,以区分分布(ID)和分布分布。在这种方法中,无需预处理输入样本,并且算法的计算负担减少了。实验表明我们的方法可以实现更好的OOD检测性能。
Deep neural networks suffer from the overconfidence issue in the open world, meaning that classifiers could yield confident, incorrect predictions for out-of-distribution (OOD) samples. Thus, it is an urgent and challenging task to detect these samples drawn far away from training distribution based on the security considerations of artificial intelligence. Many current methods based on neural networks mainly rely on complex processing strategies, such as temperature scaling and input preprocessing, to obtain satisfactory results. In this paper, we propose an effective algorithm for detecting out-of-distribution examples utilizing PEDCC-Loss. We mathematically analyze the nature of the confidence score output by the PEDCC (Predefined Evenly-Distribution Class Centroids) classifier, and then construct a more effective scoring function to distinguish in-distribution (ID) and out-of-distribution. In this method, there is no need to preprocess the input samples and the computational burden of the algorithm is reduced. Experiments demonstrate that our method can achieve better OOD detection performance.