论文标题

移动来源的本地化:独特性,稳定性和贝叶斯推断

Localization of moving sources: uniqueness, stability, and Bayesian inference

论文作者

Wang, Sára, Karamehmedović, Mirza, Triki, Faouzi

论文摘要

我们考虑$ \ pmb {r}^3 $中标量波方程的亚音速移动点源问题,证明了直接问题的规律性结果,以及逆问题的唯一性和稳定性结果。然后,我们在数值上提出并研究了一个贝叶斯框架,用于推断源轨迹和波场测量的强度。该框架采用高斯工艺先验,这是带有马尔可夫链蒙特卡洛采样的预先条件的曲柄尼古尔森方案,并在功能上进行条件,以包括有关源轨迹的先前信息。

We consider the subsonic moving point source problem for the scalar wave equation in $\pmb{R}^3$, proving a regularity result for the direct problem, and uniqueness and stability results for the inverse problem. We then present and investigate numerically a Bayesian framework for the inference of the source trajectory and intensity from wave field measurements. The framework employs Gaussian process priors, the pre-conditioned Crank-Nicholson scheme with Markov Chain Monte Carlo sampling, and conditioning on functionals to include prior information on the source trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源