论文标题

动量结构域极化探测等离子晶体中泄漏模式的前向和反旋转大厅效应

Momentum domain polarization probing of forward and inverse spin Hall effect of leaky modes in plasmonic crystals

论文作者

Nayak, Jeeban Kumar, Suchiang, Harley, Ray, Subir Kumar, Banerjee, Ayan, Gupta, Subhasish Dutta, Ghosh, Nirmalya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Simultaneous manifestation of both forward and inverse photonic Spin Hall effect in geometrically tailored anisotropic waveguided plasmonic crystal system is observed through the excitation of the leaky hybridized quasiguided modes. The quasiguided modes of the plasmonic crystal manifested in the far-field momentum (Fourier) domain as circular ring-like intensity distributions, and the different spin orbit interaction (SOI) effects revealed their exclusive signature as polarization-dependent azimuthal intensity lobes on top of it. Using a darkfield Fourier domain polarization Mueller matrix platform, we have observed input spin (circular polarization)- dependent trajectory of the leaky quasiguided modes in the momentum domain (forward spin Hall effect) and its reciprocal effect as the wave vector-controlled spin selection of quasiguided modes (inverse spin Hall effect). These effects are separately manifested in characteristic Mueller matrix elements enabling their interpretation as geometrical circular anisotropy effects. Resonance-enabled enhancement and control of these effects are also demonstrated by exploiting the spectral Fano-type resonance. The far-field manifestation of spin-directional excitation of leaky quasiguided modes, their unique interpretation through momentum domain Mueller matrix, regulation and control of the SOI effects in plasmonic-photonic crystal systems, opens up exciting avenues in spin-orbit photonic research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源