论文标题

序列模式的广义锤距

A Generalized Hamming Distance of Sequence Patterns

论文作者

Liu, Pengyu, Na, Jingzhou

论文摘要

我们将长度$ n $和级别$ \ ell $的序列模式定义为序列的等效类别,这些序列具有$ n $元素的等效类别,从$ \ ell $ Integer符号$ \ {1,2,\ ldots,\ ell \} $无限制,而无需限制等值的情况下,而无需符号符号符号符号,而无需重复限制。我们通过概括序列之间的锤击距离来定义一组$ k $序列的长度$ n $和级别$ \ ell $的距离。我们计算$ k $序列的最大距离,长度$ n $和级别$ \ ell $,并演示如何计算一对长度 - $ n $级别之间的确切距离 - $ \ ell $ $序列模式。

We define sequence patterns of length $n$ and level $\ell$ to be equivalence classes of sequences that have $n$ elements from the set of $\ell$ integer symbols $\{1,2,\ldots,\ell\}$ with no restriction on repetition, where the equivalence relation is induced by symbol relabeling without swapping positions of symbols. We define a distance for a set of $k$ sequence patterns of length $n$ and level $\ell$ by generalizing the Hamming distance between sequences. We compute the maximal distance for $k$ sequence patterns of length $n$ and level $\ell$ and demonstrate how to calculate the exact distance between a pair of length-$n$ level-$\ell$ sequence patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源