论文标题
基于CRCONI的中等和高渗透合金的特殊断裂韧性接近液态氦气温度
Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys close to liquid helium temperatures
论文作者
论文摘要
已经证明,基于CRCONI系统的中和高渗透合金已显示出出色的强度,拉伸延展性和断裂韧性(耐损伤特性),尤其是在低温温度下。在这里,我们检查了以面部为中心的立方体,均衡的CRCONI和CRMNFECONI合金的JIC和(后计)的KJIC断裂韧性值。在〜1.5 GPA的流动应力值下,裂纹 - 裂纹 - kJIC kjic韧性与异常高的235和415 MPA(crcon)(CRCON)(CRCON)(MOROOT)(MOROOT)(MOROOT)(MOROOT)高度高。后者在2.25毫米稳定的裂纹后显示出裂纹增长的韧性KSS超过540 MPa(平方根)m,据我们所知,这是有史以来报告的最高值。通过扫描电子和透射电子显微镜表征CRCONI中裂纹尖端区域的变形结构在20 K处揭示了与较高温度下的变形结构,并且涉及异构成核的构成,但受限制的生长,堆叠断层和细纳米弯曲,以及转换为六角形的封闭式封闭相结合相。这些特征的相干界面可以促进脱位的停滞和传播,以分别产生强度和延展性,从而有助于持续的应变硬化。实际上,我们认为,这些名义上单相,集中的固体合金通过渐进的变形机制的渐进协同作用,包括脱位滑动,堆叠型过失形成,纳米扭动并最终在原位相变的位置来发展其抗断裂,从而扩大了连续的固定性,从而延伸了强度和连续性的强度,从而延伸了延伸的强度,从而延伸了延迟的强度,从而延迟了延迟的延迟。
Medium- and high-entropy alloys based on the CrCoNi-system have been shown to display outstanding strength, tensile ductility and fracture toughness (damage-tolerance properties), especially at cryogenic temperatures. Here we examine the JIc and (back-calculated) KJIc fracture toughness values of the face-centered cubic, equiatomic CrCoNi and CrMnFeCoNi alloys at 20 K. At flow stress values of ~1.5 GPa, crack-initiation KJIc toughnesses were found to be exceptionally high, respectively 235 and 415 MPa(square-root)m for CrMnFeCoNi and CrCoNi, with the latter displaying a crack-growth toughness Kss exceeding 540 MPa(square-root)m after 2.25 mm of stable cracking, which to our knowledge is the highest such value ever reported. Characterization of the crack-tip regions in CrCoNi by scanning electron and transmission electron microscopy reveal deformation structures at 20 K that are quite distinct from those at higher temperatures and involve heterogeneous nucleation, but restricted growth, of stacking faults and fine nano-twins, together with transformation to the hexagonal closed-packed phase. The coherent interfaces of these features can promote both the arrest and transmission of dislocations to generate respectively strength and ductility which strongly contributes to sustained strain hardening. Indeed, we believe that these nominally single-phase, concentrated solid-solution alloys develop their fracture resistance through a progressive synergy of deformation mechanisms, including dislocation glide, stacking-fault formation, nano-twinning and eventually in situ phase transformation, all of which serve to extend continuous strain hardening which simultaneously elevates strength and ductility (by delaying plastic instability), leading to truly exceptional resistance to fracture.