论文标题
低树木级贝叶斯矢量自动进度模型
Low Tree-Rank Bayesian Vector Autoregression Model
论文作者
论文摘要
矢量自动进度已被广泛用于建模和分析多元时间序列数据。在高维设置中,模型参数正则化方案诱导稀疏性产生了可解释的模型,并实现了良好的预测性能。但是,在许多数据应用中,例如神经科学中的应用程序,从现有的矢量自动估计方法中的Granger因果关系图估计往往非常密集且难以解释,除非人们妥协了拟合优度。为了解决这个问题,本文提议结合一个常用的结构假设 - 基本真相图应在很大程度上连接,从某种意义上说,它最多应包含几个组件。我们采用贝叶斯的方法,并为回归系数开发出新的树级先验分布。具体而言,此先前的分布迫使非零系数仅出现在几棵树的结合中。由于每个跨越树都将$ P $节点连接到仅$(P-1)$边缘,因此实际上可以实现高连通性和高稀疏性。我们开发了一个计算高效的Gibbs采样器,该采样器可扩展到大样本量和高维度。在分析重测功能磁共振成像数据时,与流行的现有方法相比,我们的模型产生了更容易解释的图估计。此外,我们还显示了这种新方法的吸引力,例如有效计算,轻度稳定性条件和后验一致性。
Vector autoregression has been widely used for modeling and analysis of multivariate time series data. In high-dimensional settings, model parameter regularization schemes inducing sparsity yield interpretable models and achieved good forecasting performance. However, in many data applications, such as those in neuroscience, the Granger causality graph estimates from existing vector autoregression methods tend to be quite dense and difficult to interpret, unless one compromises on the goodness-of-fit. To address this issue, this paper proposes to incorporate a commonly used structural assumption -- that the ground-truth graph should be largely connected, in the sense that it should only contain at most a few components. We take a Bayesian approach and develop a novel tree-rank prior distribution for the regression coefficients. Specifically, this prior distribution forces the non-zero coefficients to appear only on the union of a few spanning trees. Since each spanning tree connects $p$ nodes with only $(p-1)$ edges, it effectively achieves both high connectivity and high sparsity. We develop a computationally efficient Gibbs sampler that is scalable to large sample size and high dimension. In analyzing test-retest functional magnetic resonance imaging data, our model produces a much more interpretable graph estimate, compared to popular existing approaches. In addition, we show appealing properties of this new method, such as efficient computation, mild stability conditions and posterior consistency.