论文标题
Wildnet:从野外学习域的广义语义分割
WildNet: Learning Domain Generalized Semantic Segmentation from the Wild
论文作者
论文摘要
我们提出了一个名为Wildnet的新域广义语义分割网络,该网络通过利用野外的各种内容和样式来学习域名的特征。在域的概括中,看不见的目标域的概括能力较低,显然是由于对源域的过度拟合。为了解决这个问题,以前的工作重点是通过删除或多样化来源域的样式来概括域。这些缓解了对源风格的过度拟合,但忽略了对源容器的过度拟合。在本文中,我们建议在野外的帮助下多样化源域的内容和样式。我们的主要思想是网络自然地从野外学习域名的语义信息。为此,我们通过增强源功能以类似于野生风格并使网络适应各种样式来使风格多样化。此外,我们鼓励网络通过提供从野生空间中的野外到源内容的语义变化来学习类歧视的特征。最后,即使源域的内容和样式都扩展到野外,我们将网络正规化以捕获一致的语义信息。在五个不同数据集上进行的广泛实验验证了我们野生网的有效性,并且我们的表现明显优于最先进的方法。源代码和模型可在线获得:https://github.com/suhyeonlee/wildnet。
We present a new domain generalized semantic segmentation network named WildNet, which learns domain-generalized features by leveraging a variety of contents and styles from the wild. In domain generalization, the low generalization ability for unseen target domains is clearly due to overfitting to the source domain. To address this problem, previous works have focused on generalizing the domain by removing or diversifying the styles of the source domain. These alleviated overfitting to the source-style but overlooked overfitting to the source-content. In this paper, we propose to diversify both the content and style of the source domain with the help of the wild. Our main idea is for networks to naturally learn domain-generalized semantic information from the wild. To this end, we diversify styles by augmenting source features to resemble wild styles and enable networks to adapt to a variety of styles. Furthermore, we encourage networks to learn class-discriminant features by providing semantic variations borrowed from the wild to source contents in the feature space. Finally, we regularize networks to capture consistent semantic information even when both the content and style of the source domain are extended to the wild. Extensive experiments on five different datasets validate the effectiveness of our WildNet, and we significantly outperform state-of-the-art methods. The source code and model are available online: https://github.com/suhyeonlee/WildNet.