论文标题
弥补,固定和延伸的通勤环
Silting, cosilting, and extensions of commutative ring
论文作者
论文摘要
我们研究了通过换向环的形态引起的扩展函子在模块类别的派生类别中的转移。事实证明,扩展函子保存(CO)有限类型的淤积对象。在许多情况下,有界的淤泥特性沿着忠实的平圈延伸降临。特别是,有界淤积复合物的概念是Zariski局部的。
We study the transfer of (co)silting objects in derived categories of module categories via the extension functors induced by a morphism of commutative rings. It is proved that the extension functors preserve (co)silting objects of (co)finite type. In many cases the bounded silting property descends along faithfully flat ring extensions. In particular, the notion of bounded silting complex is Zariski local.