论文标题
唐纳森方程的梯度估计值紧凑的kähler歧管
Gradient estimates for Donaldson's equation on a compact Kähler manifold
论文作者
论文摘要
我们证明了唐纳森方程\ [ω\ wedge(χ+\ \ sqrt {-1} \ partial \ poartline {\ partial}φ)^{n-1} = e^f(χ+\ sqrt {-1}} {-1} \ pottial \ partline^n^模拟)在$ n $二维紧凑型Kähler歧管$(m,ω)$上,另一个Hermitian Metric $χ$直接从统一的上限$tr_Ωχ_φ$和Alexandrov-Bakelman-Pucci(ABP)最大原则。
We prove a gradient estimate for Donaldson's equation \[ω\wedge(χ+\sqrt{-1}\partial\overline{\partial}φ)^{n-1}=e^F(χ+\sqrt{-1}\partial\overline{\partial}φ)^n\] (and its parabolic analog) on an $n$-dimensional compact Kähler manifold $(M,ω)$ with another Hermitian metric $χ$ directly from the uniform upper bounds for $tr_ωχ_φ$ and Alexandrov-Bakelman-Pucci (ABP) maximum principle.