论文标题

使用复发性神经网络方法匹配的延时数据

Time-lapse data matching using a recurrent neural network approach

论文作者

Alali, Abdullah, Kazei, Vladimir, Sun, Bingbing, Alkhalifah, Tariq

论文摘要

延时地震数据采集是由于注入流体注入而导致的储层变化的必不可少的工具,例如CO $ _2 $注入。通过在确切位置获取多个地震调查,我们可以通过分析数据差来识别储层变化。但是,这种分析可能会因近地表的季节性速度变化,收购参数的不准确性以及其他不可避免的噪声而偏斜。解决此问题的常见实践(交叉平等)使用了数据的一部分,这些部分不会期望更改设计匹配过滤器,然后将其应用于整个数据,包括储层区域。像交叉平衡一样,我们在不包括储层区域的数据的一部分上训练一个经常性的神经网络,然后推断与储层相关的数据。复发性神经网络可以学习数据的时间依赖性,这与基于过滤器窗口中获得的本地信息处理数据的匹配过滤器不同。我们演示了在各种示例中与数据匹配的方法,并将其与常规匹配过滤器进行比较。具体而言,我们首先说明该方法与两个轨迹匹配的能力,然后在预堆栈2D合成数据上测试该方法。然后,我们通过提供RTM图像来验证4D信号的增强。我们使用归一化根平方和可预测性指标测量重复性,并表明在某些情况下,它克服了匹配的滤波器方法。

Time-lapse seismic data acquisition is an essential tool to monitor changes in a reservoir due to fluid injection, such as CO$_2$ injection. By acquiring multiple seismic surveys in the exact location, we can identify the reservoir changes by analyzing the difference in the data. However, such analysis can be skewed by the near-surface seasonal velocity variations, inaccuracy in the acquisition parameters, and other inevitable noise. The common practice (cross-equalization) to address this problem uses the part of the data where changes are not expected to design a matching filter and then apply it to the whole data, including the reservoir area. Like cross-equalization, we train a recurrent neural network on parts of the data excluding the reservoir area and then infer the reservoir-related data. The recurrent neural network can learn the time dependency of the data, unlike the matching filter that processes the data based on the local information obtained in the filter window. We demonstrate the method of matching the data in various examples and compare it with the conventional matching filter. Specifically, we start by demonstrating the ability of the approach in matching two traces and then test the method on a pre-stack 2D synthetic data. Then, we verify the enhancements of the 4D signal by providing RTM images. We measure the repeatability using normalized root mean square and predictability metrics and show that in some cases, it overcomes the matching filter approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源