论文标题

desc恒星代码套件第三部分:准对称优化

The DESC Stellarator Code Suite Part III: Quasi-symmetry optimization

论文作者

Dudt, Daniel, Conlin, Rory, Panici, Dario, Kolemen, Egemen

论文摘要

DESC Stellarator优化代码利用高级数值方法比传统工具快得多。由于自动分化,在每个优化步骤中仅需要一个平衡解决方案,这有效地提供了精确的导数信息。高斯 - 纽顿(Gauss-Newton)信任区域优化方法使用二阶导数信息来迈出参数空间的大步,并迅速收敛。随着时间的汇编和GPU可移植性,与其他方法相比,使用DESC的高维恒星优化的计算时间较小。本文介绍了DESC固定局部局部优化算法的理论,以及如何在代码中轻松实现它的演示。显示了示例准对称优化,并将其与常规工具的结果进行了比较。 DESC中提供了三种不同形式的准对称目标,并详细讨论了它们的相对优势。在提出的示例中,三乘积公式在最小化的计算时间和粒子传输方面产生了最佳的优化结果。本文以解释模块化代码套件可以扩展以适应其他类型的优化问题的结论。

The DESC stellarator optimization code takes advantage of advanced numerical methods to search the full parameter space much faster than conventional tools. Only a single equilibrium solution is needed at each optimization step thanks to automatic differentiation, which efficiently provides exact derivative information. A Gauss-Newton trust-region optimization method uses second-order derivative information to take large steps in parameter space and converges rapidly. With just-in-time compilation and GPU portability, high-dimensional stellarator optimization runs take orders of magnitude less computation time with DESC compared to other approaches. This paper presents the theory of the DESC fixed-boundary local optimization algorithm along with demonstrations of how to easily implement it in the code. Example quasi-symmetry optimizations are shown and compared to results from conventional tools. Three different forms of quasi-symmetry objectives are available in DESC, and their relative advantages are discussed in detail. In the examples presented, the triple product formulation yields the best optimization results in terms of minimized computation time and particle transport. This paper concludes with an explanation of how the modular code suite can be extended to accommodate other types of optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源