论文标题
利用隐私概况赋予数字社会用户的能力
Leveraging Privacy Profiles to Empower Users in the Digital Society
论文作者
论文摘要
公民的隐私和道德是我们日益数字社会提出的关注的核心。分析用户是软件应用程序的标准实践,触发了对用户的需求,也是由法律强制执行的,以正确管理隐私设置。用户需要正确管理软件隐私设置,以保护个人身份信息并表达个人道德偏好。通过反映自己的个人道德偏好,可以使用户能够与数字世界互动的AI技术可以成为值得信赖的数字社会的关键推动者。我们专注于隐私维度,并通过对从健身领域收集的现有数据集进行实证研究来朝着上述方向做出贡献。我们发现根据用户的喜好将哪种问题组合来区分用户。结果表明,一组紧凑的语义驱动问题(关于域独立的隐私偏好)有助于与复杂的域相关的域相比,有助于更好地区分用户。这证实了该研究的假设是道德态度是要收集的相关信息。根据结果,我们实施了一个建议系统,以向用户提供与隐私选择相关的合适建议。然后,我们证明建议的推荐系统为用户提供相关的设置,从而获得了高准确性。
Privacy and ethics of citizens are at the core of the concerns raised by our increasingly digital society. Profiling users is standard practice for software applications triggering the need for users, also enforced by laws, to properly manage privacy settings. Users need to manage software privacy settings properly to protect personally identifiable information and express personal ethical preferences. AI technologies that empower users to interact with the digital world by reflecting their personal ethical preferences can be key enablers of a trustworthy digital society. We focus on the privacy dimension and contribute a step in the above direction through an empirical study on an existing dataset collected from the fitness domain. We find out which set of questions is appropriate to differentiate users according to their preferences. The results reveal that a compact set of semantic-driven questions (about domain-independent privacy preferences) helps distinguish users better than a complex domain-dependent one. This confirms the study's hypothesis that moral attitudes are the relevant piece of information to collect. Based on the outcome, we implement a recommender system to provide users with suitable recommendations related to privacy choices. We then show that the proposed recommender system provides relevant settings to users, obtaining high accuracy.